
Updating the whole world to a new API
otherwise known as "eh. I'll get to it"

!

New talk, who dis?

Ben Ford
Developer Advocate @ Puppet
@binford2k: [(https://www.twitter.com/binford2k) [(https://www.github.com/binford2k) [
(https://puppetcommunity.slack.com/team/U11HA7VJ7)

Hi, I'm Ben, aka binford2k on the interwebs.
I push the bits and talk to the people at Puppet and in our community.
If you've been around long enough, then I've probably told you to just fucking upgrade already at
some point, so in keeping with tradition, I'll be doing that again today.
But this time I'm talking about ways that we are working to make it easier for you.

https://www.twitter.com/binford2k
https://www.github.com/binford2k
https://puppetcommunity.slack.com/team/U11HA7VJ7

0
Years

0
Months

0
Days

0
Hours

0
Minutes

0
Seconds

Anyone recognize this counter?

"

Enable Guido Mode

Does anyone recognize this counter?
It's the python 2.7 end of life counter.
And as you can see, it's expired.

Python 2.7 has finally been retired
Long overdue

#! /usr/bin/env python

print ('Hello World!')

January 1994: Python 1.0 meets the world
October 2000: 2.0 release
December 2008: 3.0 release

2015: Python 2.0 sunset

That's a SEVEN YEAR sunset plan.

Python 2.7 has finally been retired
Long overdue

#! /usr/bin/env python

print ('Hello World!')

January 1994: Python 1.0 meets the world
October 2000: 2.0 release
December 2008: 3.0 release

Postponed sunset date of January 1, 2020

From the release of 3.0 to the ultimate retiring of the legacy 2.0 line is TWELVE YEARS.

We did not want to hurt the people using Python 2. So, in 2008, we announced that we
would sunset Python 2 in 2015, and asked people to upgrade before then. Some did, but
many did not. So, in 2014, we extended that sunset till 2020.

!

Even with a 12 year o!ramp, the end still came abruptly.
Four month reprieve. Again.
This brand new Mac I'm running, with the latest operating system still defaults to python 2.7
So does Debian stable.
So does CentOS
...

0
Years

2
Months

25
Days

11
Hours

3
Minutes

46
Seconds

Let's update that clock...

!

Enable Guido Mode

This talk is not..
Some things that I'm not talking about today

Putting down legacy software.
Downplaying the operational cost of upgrading.
Di"culty of maintaining backwards compatibility.
Move fast and break things.

So far, this sounds like I'm dishing on Python. I want to be clear that I don't intend it this
way at all. They're amazing and a victim of their own success. This is a good problem to
have.

"

This talk is not..
Some things that I'm not talking about today

Putting down legacy software.
Downplaying the operational cost of upgrading.
Di"culty of maintaining backwards compatibility.
Move fast and break things.

Updated: ^ DON'T break things.

So far, this sounds like I'm dishing on Python. I want to be clear that I don't intend it this
way at all. They're amazing and a victim of their own success. This is a good problem to
have.

"

Maintenance is really hard
For projects and for infrastructures both

Cost of supporting old features grows exponentially over time.
Reduces the pace for improvements.
Means that new features are harder to use.

Convoluted to continue supporting old functionality too.
Breaking changes break infrastructure.

Must expend e!ort just to get back to where you were.

Ensure our internal mirror is configured before we install any packages
... but their side effect also realizes all virtual packages!
Yumrepo <| |> -> Package<| |>

Example:
it's hard to make collectors work better when people depend on their two very di!erent
and unrelated side e!ects!

#

Maintenance is really hard
Sometimes it feels like we're paddling really hard just to stay where we are.$

Motivation for change
Or not.

Inertia
Resistance to change is a real thing
Why upgrade when it works fine?

Reward
New features.
Works better/faster/safer.

Often upgrades o!er nothing but the chance to make mistakes and break things!

Motivation for change
Or not.

Inertia
E!ectively a CONSTANT for any given community.
Little control over this value.

Reward
The amount of reward we can o!er in a new release is finite.
Users want new exciting features, but without changing anything.
Ultimately, little control over this value either.

Inertia:
Early adopters have very low inertia and are happy to chase the bleeding edge.
Late adopters or enterprise customers value stability and resist change.
The only way we can control inertia is by targeting a di!erent community.
Education doesn't change what the institution values.

Reward:
The cost of adding new features grows exponentially as a project matures.
Often we pay for it in stability, which ends up as a detractor again.
And there are limits to what we can build in any given release cycle.

Ultimately, this means that the di!erential between inertia and reward for a minor
upgrade cycle is e!ectively fixed and pretty small.

$

Friction
But there's a third factor

Make the upgrade path easier, more predictable, and more reliable.
Build trust in the transitions.

Admittedly, in the earlier days Puppet wasn't great at this.
Automate what we can, so the mental cost is lower.

Example: database backed apps generally handle schema updates for you.

Friction is the factor that makes forward motion more di"cult. I'm representing it as the
slope in this drawing. And this we can a!ect.

%

Puppet 3.x functions
An example of this in action.

module Puppet::Parser::Functions
 newfunction(:strlen, :type => :rvalue) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

Designed for a simpler time.
Environment safety wasn't yet a concern.
Didn't understand the cost of polluting the global namespace.

Module ecosystem wasn't as rich, so collisions were rare.
Manhandling arguments marshalled into an array didn't seem like a big deal.
Weird :rvalue parameters were fine; bleeding edge, remember?

Later on we added :arity too. What does that even mean?

rvalue and arity are well known terms to computer scientists.
Most of us are not computer scientists.

Pulluting the global namespace meant that any function could easily stomp on any other -- or
even interfere with Puppet internals.
Leaking across environments meant that functions often leaked into production long before we
intended them too.

Puppet 3.x functions
An example of this in action.

module Puppet::Parser::Functions
 newfunction(:strlen, :type => :rvalue) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

But they were easy to write.
Cut & pasted boilerplate.
We got used to the warts.

Puppet 3.x functions
An example of this in action.

module Puppet::Parser::Functions
 newfunction(:strlen, :type => :rvalue) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

!

Eh. They're good enough.

Modern Function API
Elegantly solves all those problems.

Environment safe!
Thread safe!
No global namespace pollution!
Data typed function signatures!

#

Easy to port
First identify components:

module Puppet::Parser::Functions
 newfunction(:strlen,
 :type => :rvalue,
 :doc => "Just a naive strlen example",
) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

Function name."

Easy to port
First identify components:

module Puppet::Parser::Functions
 newfunction(:strlen,
 :type => :rvalue,
 :doc => "Just a naive strlen example",
) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

Documentation."

Easy to port
First identify components:

module Puppet::Parser::Functions
 newfunction(:strlen,
 :type => :rvalue,
 :doc => "Just a naive strlen example",
) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

Parameter validation and handling."

Easy to port
First identify components:

module Puppet::Parser::Functions
 newfunction(:strlen,
 :type => :rvalue,
 :doc => "Just a naive strlen example",
) do |args|
 raise "Wrong number of args" unless args.size == 1
 raise "Wrong type of args" unless args.first.is_a String

 args.first.length
 end
end

Implementation."

Easy to port
Then write replacements:

@summary
Just a naive strlen example
 Puppet::Functions.create_function(:'mymod::strlen') do
 # @param value
 # The string to calculate the length of
 # @return [Integer]
 # The length of the input string
 dispatch :default_impl do # invoke default_impl method when matched
 param 'String', :value
 end

 def default_impl(value)
 value.length
 end
end

Function name."

Easy to port
Then write replacements:

 # @summary
 # Just a naive strlen example
Puppet::Functions.create_function(:'mymod::strlen') do
 # @param value
 # The string to calculate the length of
 # @return [Integer]
 # The length of the input string
 dispatch :default_impl do # invoke default_impl method when matched
 param 'String', :value
 end

 def default_impl(value)
 value.length
 end
end

Documentation."

Easy to port
Then write replacements:

@summary
Just a naive strlen example
Puppet::Functions.create_function(:'mymod::strlen') do
 # @param value
 # The string to calculate the length of
 # @return [Integer]
 # The length of the input string
 dispatch :default_impl do # invoke default_impl method when matched
 param 'String', :value
 end

 def default_impl(value)
 value.length
 end
end

Parameter validation and handling."

Easy to port
Then write replacements:

@summary
Just a naive strlen example
Puppet::Functions.create_function(:'mymod::strlen') do
 # @param value
 # The string to calculate the length of
 # @return [Integer]
 # The length of the input string
 dispatch :default_impl do # invoke default_impl method when matched
 param 'String', :value
 end

 def default_impl(value)
 value.length
 end
end

Implementation."

Let's come back to inertia for a bit
Drivers or blockers to change

We showed the rewards already.
Elimination of some major pain points.
But the module author doesn't necessarily have those pain points.
And the end user doesn't always see the benefits.

Any change is more work than doing nothing at all.
We don't update just to upgrade.
If it already works, upgrading without improvements is just a opportunity to break
something.

The di!erential between the cost of upgrading and the benefits of upgrading is vanishingly small.
This means that we have a very small window to provide incentives to upgrade.

Which is why people are still using Python 2.7.

Inertia is constant and significant. And rewards are actually quite small."

What about upping the reward?
How much more motivation can we provide?

Surface pain points via warnings.
Add functionality that doesn't exist in earlier API.
Provide better documentation via puppet-strings .
... not really a lot

When inertia and friction is greater than reward, we have stasis.#

This means that new functions are often written to the new API, but very few people
bother to upgrade their existing functions!

$

Friction
So what can we do to lower friction?

Make the upgrade path easier, more predictable, and more reliable.
Show how to do it with education.

Publishing tutorials and blog posts.
Automate what we can, so the mental cost is lower.

Since we've only got a tiny window to work with, let's not waste it with friction.

Can I programatically identify the components we just looked at?&

Yes we can!
(well mostly)

Over the American Thanksgiving holiday, I had a little free time.
This was a problem that had intruiged me so I dove in.
Ruby makes it surprisingly easy to introspect into source code.
As is tradition, I built a cleverly named tool to assist in the update.

https://github.com/binford2k/puppet-function-updater
https://binford2k.com/2019/11/27/automagic-function-port/

It turns out that identifying the parts of a Puppet 3.x function that we care about is
almost completely automatable.

"

https://github.com/binford2k/puppet-function-updater
https://binford2k.com/2019/11/27/automagic-function-port/

Parses function source files
Generates replacement modern API function

[~/Projects/puppetlabs-stdlib]$ puppet_function_updater --verbose
INFO: Creating lib/puppet/functions/stdlib/abs.rb
INFO: Creating lib/puppet/functions/stdlib/any2array.rb
INFO: Creating lib/puppet/functions/stdlib/any2bool.rb
INFO: Creating lib/puppet/functions/stdlib/assert_private.rb
INFO: Creating lib/puppet/functions/stdlib/base64.rb
INFO: Creating lib/puppet/functions/stdlib/basename.rb
[...]
INFO: Creating lib/puppet/functions/stdlib/values_at.rb
INFO: Creating lib/puppet/functions/stdlib/zip.rb
INFO: Functions generated. Please inspect for suitability and then
INFO: update any Puppet code with the new function names.
INFO: See https://puppet.com/docs/puppet/latest/custom_functions_ruby.html
INFO: for more information about Puppet's modern Ruby function API.

Ports old patterns to new patterns
Generates a basic spec test for each function
Validates each function and warns on invalid output

I'm sure that some of you will be disappointed that I'm not going into tech details about how this
thing works.
But my slot doesn't give me time for it.
I'll be happy to talk later, or tomorrow at our Contributor session.

Ports most of the function cleanly
Legacy API doesn't capture the function signature

The only part of the function that I cannot infer reliably.
So instead, I create a dispatch that does the same thing.

dispatch :default_impl do
 # Call the method named 'default_impl' when this is matched
 # Port this to match individual params for better type safety
 repeated_param 'Any', :args
end

def default_impl(*args)
 # paraeter handling and implementation copied in
end

Remember that the legacy API just passed all arguments as a single untyped array and
relied on the programmer to know what to do with that.

"

Then I got a little crazy
What if we could update the whole world?

Then I got a little crazy
What if we could update the whole world?

Generate a list of all Puppet modules with legacy functions:

SELECT DISTINCT repo_name
FROM `bigquery-public-data:github_repos.files`
WHERE STARTS_WITH(path, 'lib/puppet/parser/functions')
AND ref = 'refs/heads/master'

GitHub exposes a fantastic BigQuery dataset of all their public repositories."

Validate the tool
First let's build some confidence

1. First I wrote a quick script to clone each listed repo.
2. Then it ran my tool to port functions.
3. If successful, it deleted the repo.

I was left with 47 modules with edge cases to account for, but after a couple iterations and
improvements, it ported all valid functions flawlessly.

So then I updated the script with a a couple more steps, then ran it and went out for the night.

1. Instead of just cloning, now it forked too.
2. It used the GitHub API to ignore forks and only fix upstream modules.
3. After porting the function, it would submit a PR with instructions on how to complete the job.
4. And then cleaned up by deleted the repo from my namespace.

Next steps
Finishing the port

Left as an exercise for the author:
Port manifests to use the namespaced function name.

Or change it back to top-level (only if you're stdlib !)
Add one or more dispatches with proper data types.
Convert (or write) documentation to puppet-strings format.
Write more tests following the example provided.

The port is e!ectively bug-for-bug.
Can't magically infer the parameter handling.
Just copied docs straight over.
Validated code, but doesn't take advantage of new features.
Note that changing the function name makes it a semver breaking change even if functionality
is exactly the same.

https://binford2k.com/2019/11/27/automagic-function-port/

The automated pull request included links to the accompanying tutorial that describes
these steps on how to finish the port.

'

https://binford2k.com/2019/11/27/automagic-function-port/
https://binford2k.com/2019/11/27/automagic-function-port/

Mixed Response
But mostly positive
Some were sort of neutral:

Some were very positive:

Cute idea, however I’m not going to merge it unless someone gives it a smoke test at
least.

!

I love this initiative by @binford2k ❤ #puppetize #opensource!

Mixed Response
But mostly positive
But the two biggest annoyances were:

1. My fork detection didn't work properly and it contributed PRs to forks instead of just
upstream projects.

2. It created detached pull requests, which meant that module owners couldn't just add to the
PR to get a self-contained function port. They had to merge it and then add more commits
to flesh it out.

%
Also, nobody asked or suggested it, but I should have DCO signed the commits.

Community Engagement
Developer to developer

Authenticity is key.
Reaching out to your users is always valued.

Maybe it actually helped improve someone's code.
Or it just provided a reminder to do it.
Or even didn't help directly, but showed someone how to do it.

Even in the worst case, it's a signal that we care.
This connection keeps us all invested in each other and our community.

I honestly expected some pushbck from people annoyed by "garbage" PRs
Turns out that authentic connections with a developer community leads to an assumption that
things are coming from the right place.
And people appreciate genuine outreach as long as it's driven by shared value.

Sure, it benefits Puppet when you all upgrade, but it benefits you too, and that's the real
reason I'm doing this!

I'm grateful to all of you and to the culture we have built here. Even when a contribution
isn't perfect, it's recognized and valued as a genuine desire to help improve things. I
credit Vox Pupuli for a lot of that.

(

https://voxpupuli.org/

Getting better over time
We've got a small history of these things now

Manually fixed 5-10 modules broken by a puppetlabs/mysql update.
Discovered a crashing bug when a module had a zero-byte init.pp file.

Identified all the 218 modules a!ected.
Ranked and evaluated by usage and ecosystem impact.
Scripted pull request run instead of yanking the release.
Fun fact: I ran this from the floor of Puppetize Live: Amsterdam.

We're doing this 2-3 times a year now.
Learning each time, maybe we can do more?

What else?
Future developer enablement

What other ways could we engage and enable?
Do we like the idea of o!ering PR fixes?
Build a framework for more one-o! runs like this.

Automatically upgrade Hiera 3 hierarchies to Hiera 5?
Port known facts to the modern fact() function?

Other parts of Puppet are following suit:
The Bolt project automatically updates your inventory file.

Notice the giant ribbon in the corner? These handful of slides are just me spitballing the
future! Don't expect these to be promises.

"

Puppet Developer Kit
Create PDK plugins for update scripts

A full plugin system for the PDK is near.
Perhaps the update scripts should go there.
The PR framework can invoke the PDK.
Or module authors can use it themselves.

Forge tie ins?
The Forge is rad. Can we make it moreso?

Maybe opt-in on Forge profile page.
Instead of scraping GitHub, let authors choose.
Alerts for out-of-date platform or Puppet dependencies.

Shoot, maybe we could even validate for you.
Generate tested platform support instead of requiring you declare it.

Warnings when modules you depend on are updated.

Which brings us back to friction
and how we can lower it.

Your main job isn't to write Puppet code.
Your jub is to architect, build, deploy, maintain, update infrastructure.
Puppet is just one tool that helps you do that job.

And my job is to make that easier for you.

My job is to lower your friction as a developer.%

Provide a path
And give you the tools to do so.
Other irons in the fire now.

Rangefinder code change impact analysis
What downstream usage could a pull request a!ect?

Content usage telemetry project
How many people are using which classes and types from your modules and on
what platforms?
For this, I'll need your help socializing so people adopt it.

https://github.com/puppetlabs/puppet-community-rangefinder
Example: https://github.com/puppetlabs/puppetlabs-postgresql/pull/1132

Telemetry implmentation is not published yet
Hacking on it during Contributor event tomorrow
Want feedback on data collection and privacy

Most importantly, both of these tools are powered by open datasets that are finally just
weeks from going public. You'll be able to use the same data to invent other tooling.

)

https://github.com/puppetlabs/puppet-community-rangefinder
https://github.com/puppetlabs/puppetlabs-postgresql/pull/1132

And ultimately
We are working to make your job as contributors easier

&
You'll notice that my handle is on every one of these slides.
That's because I want to hear from you.

feedback, suggestions, ideas.

Our goal is that maintaining quality should be easier than not.)

A quick summary
Motivation for change and initiatives

Velocity of change is driven by three things.
Inertia holds you back.
Promise of Rewards pulls you forward.
And Friction slows or prevents change.

Project maintainers have little control over inertia or rewards.
But we can work to decrease friction.

As both a consumer and as a producer.

These points apply to you in your own open source projects too."

A quick summary
Motivation for change and initiatives

Some ways that Puppet will be reducing friction for you:
Suggesting fixes/updates for known issues.
Providing tooling that helps make updates.
Forge integrations to surface things that can be improved;
and ways that we can help each other with those improvements.

Learn More
The info dump page

Porting functions to the new API:
https://puppet.com/blog/refactoring-legacy-ruby-functions/

Check out the automagic Puppet Function Updater:
https://github.com/binford2k/puppet-function-updater
Maybe help me port it to the PDK?

Blog posts on the updater and next steps:
https://binford2k.com/2019/11/27/automagic-function-port/
https://binford2k.com/2020/01/11/porting-functions/

Read more about documenting your functions or other Puppet code
https://puppet.com/docs/puppet/latest/puppet_strings.html

Watch my twitter for a link to this presentation soon.

https://puppet.com/blog/refactoring-legacy-ruby-functions/
https://puppet.com/blog/refactoring-legacy-ruby-functions/
https://github.com/binford2k/puppet-function-updater
https://github.com/binford2k/puppet-function-updater
https://binford2k.com/2019/11/27/automagic-function-port/
https://binford2k.com/2020/01/11/porting-functions/
https://puppet.com/docs/puppet/latest/puppet_strings.html
https://puppet.com/docs/puppet/latest/puppet_strings.html

Puppet Camps!
Share the awesome projects you're working on

CFP for all three is open: submit a talk!*

https://docs.google.com/forms/d/1eZ1sytbCr-0mP2Iux-IcGNvELNBiUwZMKBMLd-JL-W8

